Dose-specific efficacy of adipose-derived mesenchymal stem cells in septic mice

脂肪间充质干细胞对脓毒症小鼠的剂量特异性疗效

阅读:4
作者:Kui Li #, Tao Wang #, Rui Li, Fulai Xue, Guodan Zeng, Jingyao Zhang, Yuan Ma, Li Feng, Y James Kang

Background

Mesenchymal stem cells (MSCs) therapy for sepsis has been extensively studied in the past decade; however, the treatment regimen and mechanism of action of MSCs remain elusive. Here, we attempted to understand the efficacy and mechanism of action of MSCs on rescuing mice with sepsis.

Conclusions

Our findings demonstrate a dose-specific effect of ADSCs on the treatment of sepsis due to dose-related interactions between exogenous stem cells and the host's microenvironment. Therefore, a precise dosing regimen is a prerequisite for ADSCs therapy for sepsis.

Methods

A mouse model of sepsis was produced by cecal ligation and puncture (CLP). Allogeneic adipose-derived MSCs (ADSCs) were administered by intravenous infusion at 6 h after CLP, and dose-related effects of ADSCs on these mice were determined by survival rate, histopathological changes, biochemical and coagulation parameters, bacterial load, and plasma levels of endotoxin and inflammatory cytokines. The tissue distribution of intravenously infused ADSCs in septic mice was investigated by pre-labeling ADSCs with the lipophilic membrane dye PKH26. RNA sequencing analysis was performed to assess the transcriptional changes in peripheral blood mononuclear cells (PBMCs) and the liver.

Results

A significant therapeutic effect of ADSCs at a dose of 2 × 107 cells/kg in septic mice was evidenced by a remarkable reduction in mortality (35.89% vs. 8.89% survival rate), blood bacterial burden, systemic inflammation, and multiple organ damage. In contrast, ADSCs at a lower dose (1 × 107 cells/kg) failed to achieve any beneficial outcomes, while ADSCs at a higher dose (4 × 107 cells/kg) caused more early death within 24 h after CLP, retaining a steady survival rate of 21.42% thereafter. PKH26-labeled ADSCs were predominantly localized in the lungs of septic mice after intravenous infusion, with only a smaller proportion of PKH26-positive signals appearing in the liver and spleen. RNA sequencing analysis identified that insufficient phagocytic activity of PBMCs in addition to a hyperactivation of the hepatic immune response was responsible for the ineffectiveness of low-dose ADSCs therapy, and acute death caused by high-dose ADSCs infusion was associated with impaired coagulation signaling in PBMCs and exacerbated hepatic hypoxic injury. Conclusions: Our findings demonstrate a dose-specific effect of ADSCs on the treatment of sepsis due to dose-related interactions between exogenous stem cells and the host's microenvironment. Therefore, a precise dosing regimen is a prerequisite for ADSCs therapy for sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。