3D Printing of Naturally Derived Adhesive Hemostatic Sponge

3D 打印天然粘性止血海绵

阅读:6
作者:Minyu Zhou, Tao Yuan, Luoran Shang

Abstract

Hydrogel hemostatic sponges have been recognized for its effectiveness in wound treatment due to its excellent biocompatibility, degradability, as well as multi-facet functionalities. Current research focuses on optimizing the composition and structure of the sponge to enhance its therapeutic effectiveness. Here, we propose an adhesive hydrogel made from purely natural substances extracted from okra and Panax notoginseng. We utilize 3-dimensional (3D) printing technology to fabricate the hemostatic hydrogel scaffold, incorporating gelatin into the hydrogel and refining the mixing ratio. The interaction between gelatin and okra polyphenols contributes to successful injectability as well as stability of the printed scaffold. The okra in the scaffold exhibits favorable adhesion and hemostatic effects, and the total saponins of Panax notoginseng facilitate angiogenesis. Through in vitro experiments, we have substantiated the scaffold's excellent stability, adhesion, biocompatibility, and angiogenesis-promoting ability. Furthermore, in vivo experiments have demonstrated its dual functionality in rapid hemostasis and wound repair. These features suggest that the 3D-printed, natural substance-derived hydrogel scaffolds have valuable potential in wound healing and related applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。