Amelioration of a mouse model of osteogenesis imperfecta with hematopoietic stem cell transplantation: microcomputed tomography studies

造血干细胞移植改善成骨不全症小鼠模型:微型计算机断层扫描研究

阅读:4
作者:Meenal Mehrotra, Michael Rosol, Makio Ogawa, Amanda C Larue

Conclusions

These findings strongly support the concept that HSCs generate bone cells. Furthermore, they are consistent with observations from clinical transplantation studies and suggest therapeutic potentials of HSCs in OI.

Methods

We transplanted BM mononuclear cells or 50 BM cells highly enriched for HSCs from transgenic enhanced green fluorescent protein mice into irradiated oim mice and analyzed changes in bone parameters using longitudinal microcomputed tomography.

Objective

To test the hypothesis that hematopoietic stem cells (HSCs) generate bone cells using bone marrow (BM) cell transplantation in a mouse model of osteogenesis imperfecta (OI). OI is a genetic disorder resulting from abnormal amount and/or structure of type I collagen and is characterized by osteopenia, fragile bones, and skeletal deformities. Homozygous OI murine mice (oim; B6C3Fe a/a-Col1a2(oim)/J) offer excellent recipients for transplantation of normal HSCs, because fast turnover of osteoprogenitors has been shown. Materials and

Results

Dramatic improvements were observed in three-dimensional microcomputed tomography images of these bones 3 to 6 months post-transplantation when the mice showed high levels of hematopoietic engraftment. Histomorphometric assessment of the bone parameters, such as trabecular structure and cortical width, supported observations from three-dimensional images. There was an increase in bone volume, trabecular number, and trabecular thickness with a concomitant decrease in trabecular spacing. Analysis of a nonengrafted mouse or a mouse that was transplanted with BM cells from oim mice showed continued deterioration in the bone parameters. The engrafted mice gained weight and became less prone to spontaneous fractures while the control mice worsened clinically and eventually developed kyphosis. Conclusions: These findings strongly support the concept that HSCs generate bone cells. Furthermore, they are consistent with observations from clinical transplantation studies and suggest therapeutic potentials of HSCs in OI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。