Genome-scale modeling identifies dynamic metabolic vulnerabilities during the epithelial to mesenchymal transition

基因组规模建模揭示了上皮间质转化过程中动态的代谢脆弱性。

阅读:3
作者:Rupa Bhowmick # ,Scott Campit # ,Shiva Krishna Katkam ,Venkateshwar G Keshamouni ,Sriram Chandrasekaran

Abstract

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear. In this work, using genome-scale metabolic modeling, we perform a meta-analysis of time-course transcriptomics, time-course proteomics, and single-cell transcriptomics EMT datasets from cell culture models stimulated with TGF-β. We uncovered temporal metabolic dependencies in glycolysis and glutamine metabolism, and experimentally validated isoform-specific dependency on Enolase3 for cell survival during EMT. We derived a prioritized list of metabolic dependencies based on model predictions, literature mining, and CRISPR-Cas9 essentiality screens. Notably, enolase and triose phosphate isomerase reaction fluxes significantly correlate with survival of lung adenocarcinoma patients. Our study illustrates how integration of heterogeneous datasets using a mechanistic computational model can uncover temporal and cell-state-specific metabolic dependencies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。