Age-related endolysosome dysfunction in the rat urothelium

大鼠尿路上皮中与年龄相关的内溶酶体功能障碍

阅读:7
作者:Steven T Truschel, Dennis R Clayton, Jonathan M Beckel, Jonathan G Yabes, Yi Yao, Amanda Wolf-Johnston, Lori A Birder, Gerard Apodaca

Abstract

Lysosomal dysfunction is associated with a number of age-related pathologies that affect all organ systems. While much research has focused on neurodegenerative diseases and aging-induced changes in neurons, much less is known about the impact that aging has on lower urinary tract function. Our studies explored age-dependent changes in the content of endo-lysosomal organelles (i.e., multivesicular bodies, lysosomes, and the product of their fusion, endolysosomes) and age-induced effects on lysosomal degradation in the urothelium, the epithelial tissue that lines the inner surface of the bladder, ureters, and renal pelvis. When examined by transmission electron microscopy, the urothelium from young adult rats (~3 months), mature adult rats (~12 months), and aged rats (~26 months old) demonstrated a progressive age-related accumulation of aberrantly large endolysosomes (up to 7μm in diameter) that contained undigested content, likely indicating impaired degradation. Stereological analysis confirmed that aged endolysosomes occupied approximately 300% more volume than their younger counterparts while no age-related change was observed in multivesicular bodies or lysosomes. Consistent with diminished endolysosomal degradation, we observed that cathepsin B activity was significantly decreased in aged versus young urothelial cell lysates as well as in live cells. Further, the endolysosomal pH of aged urothelium was higher than that of young adult (pH 6.0 vs pH 4.6). Our results indicate that there is a progressive decline in urothelial endolysosomal function during aging. How this contributes to bladder dysfunction in the elderly is discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。