Prevalent integration of genomic repetitive and regulatory elements and donor sequences at CRISPR-Cas9-induced breaks

在 CRISPR-Cas9 诱导的断裂处,基因组重复和调控元件以及供体序列普遍整合

阅读:6
作者:Chongwei Bi #, Baolei Yuan #, Yingzi Zhang, Mengge Wang, Yeteng Tian, Mo Li

Abstract

CRISPR-Cas9 genome editing has been extensively applied in both academia and clinical settings, but its genotoxic risks, including large insertions (LgIns), remain poorly studied due to methodological limitations. This study presents the first detailed report of unintended LgIns consistently induced by different Cas9 editing regimes using various types of donors across multiple gene loci. Among these insertions, retrotransposable elements (REs) and host genomic coding and regulatory sequences are prevalent. RE frequencies and 3D genome organization analysis suggest LgIns originate from randomly acquired genomic fragments by DNA repair mechanisms. Additionally, significant unintended full-length and concatemeric double-stranded DNA (dsDNA) donor integrations occur when donor DNA is present. We further demonstrate that phosphorylated dsDNA donors consistently reduce large insertions and deletions by almost two-fold without compromising homology-directed repair (HDR) efficiency. Taken together, our study addresses a ubiquitous and overlooked risk of unintended LgIns in Cas9 editing, contributing valuable insights for the safe use of Cas9 editing tools.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。