Bioengineered 3D microvessels and complementary animal models reveal mechanisms of Trypanosoma congolense sequestration

生物工程 3D 微血管和互补动物模型揭示了刚果锥虫隔离的机制

阅读:5
作者:Teresa Porqueddu, Maria Zorrinho-Almeida, Mariana De Niz, Aitor Casas-Sánchez, Viola Introini, Silvia Sanz Sender, Diana Carrasqueira, Luísa M Figueiredo, Maria Bernabeu, Sara Silva Pereira0

Abstract

In the mammalian host, Trypanosoma congolense cytoadheres, or sequesters, to the vascular endothelium. Although sequestration influences clinical outcome, disease severity and organ pathology, its determinants and mediators remain unknown. Challenges such as the variability of animal models, the only-recently developed tools to genetically manipulate the parasite, and the lack of physiologically-relevant in vitro models have hindered progress. Here, we engineered brain and cardiac 3D bovine endothelial microvessel models that mimic the bovine brain microvasculature and the bovine aorta, respectively. By perfusing these models with two T. congolense strains, we investigated the roles of flow for parasite sequestration and tropism for different endothelial beds. We discovered that sequestration is dependent on cyclic adenosine monophosphate (cAMP) signalling, closely linked to parasite proliferation, but not associated with parasite transmission to the tsetse fly vector. Finally, by comparing the expression profiles of sequestered and non-sequestered parasites collected from a rodent model, we showed gene expression changes in sequestered parasites, including of surface variant antigens. This work presents a physiologically-relevant platform to study trypanosome interactions with the vasculature and provides a deeper understanding of the molecular and biophysical mechanisms underlying T. congolense sequestration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。