Machine learning with label-free Raman microscopy to investigate ferroptosis in comparison with apoptosis and necroptosis

使用无标记拉曼显微镜进行机器学习,研究铁死亡与细胞凋亡和坏死性凋亡的比较

阅读:6
作者:Joost Verduijn, Eva Degroote, André G Skirtach

Methods

PCA-SVM (principal component analysis-SVM), peak fitting-AUC-SVM (area under the curve) and peak fitting-spectral reconstruction-SVM rendered prediction accuracies of ~52%, ~43%, and 61%, respectively. Peak fitting has the additional benefit of enabling the biological interpretation of Raman scattering peaks by using the area under the curve, although at a loss of general accuracy. The potential of Raman microscopy in biology, in combination with machine learning pipelines, can be applied to a broader field of cell biology, not limited to regulated cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。