Exploring protein natural diversity in environmental microbiomes with DeepMetagenome

利用 DeepMetagenome 探索环境微生物组中蛋白质的天然多样性

阅读:4
作者:Xiaofang Li, Jun Zhang, Dan Ma, Xiaofei Fan, Xin Zheng, Yong-Xin Liu

Abstract

Protein natural diversity offers a vast sequence space for protein engineering, and deep learning enables its detection from metagenomes/proteomes without prior assumptions. DeepMetagenome, a Python-based method, explores protein diversity through modules for training and analyzing sequence datasets. The deep learning model includes Embedding, Conv1D, LSTM, and Dense layers, with sequence feature analysis for data cleaning. Applied to metallothioneins from a database of over 146 million coding features, DeepMetagenome identified over 500 high-confidence metallothionein sequences, outperforming DIAMOND and CNN-based models. It showed stable performance compared to a Transformer-based model over 25 epochs. Among 23 synthesized sequences, 20 exhibited metal resistance. The tool also successfully explored the diversity of three additional protein families and is freely available on GitHub with detailed instructions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。