Loss of miR-451a enhances SPARC production during myogenesis

miR-451a 的缺失增强了肌生成过程中 SPARC 的产生。

阅读:2
作者:Rachel Munk ,Jennifer L Martindale ,Xiaoling Yang ,Jen-Hao Yang ,Ioannis Grammatikakis ,Clara Di Germanio ,Sarah J Mitchell ,Rafael de Cabo ,Elin Lehrmann ,Yongqing Zhang ,Kevin G Becker ,Vered Raz ,Myriam Gorospe ,Kotb Abdelmohsen ,Amaresh C Panda

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that critically regulate gene expression. Their abundance and function have been linked to a range of physiologic and pathologic processes. In aged monkey muscle, miR-451a and miR-144-3p were far more abundant than in young monkey muscle. This observation led us to hypothesize that miR-451a and miR-144-3p may influence muscle homeostasis. To test if these conserved microRNAs were implicated in myogenesis, we investigated their function in the mouse myoblast line C2C12. The levels of both microRNAs declined with myogenesis; however, only overexpression of miR-451a, but not miR-144-3p, robustly impeded C2C12 differentiation, suggesting an inhibitory role for miR-451a in myogenesis. Further investigation of the regulatory influence of miR-451a identified as one of the major targets Sparc mRNA, which encodes a secreted protein acidic and rich in cysteine (SPARC) that functions in wound healing and cellular differentiation. In mouse myoblasts, miR-451a suppressed Sparc mRNA translation. Together, our findings indicate that miR-451a is downregulated in differentiated myoblasts and suggest that it decreases C2C12 differentiation at least in part by suppressing SPARC biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。