BET protein inhibitor JQ1 inhibits growth and modulates WNT signaling in mesenchymal stem cells

BET 蛋白抑制剂 JQ1 抑制间充质干细胞生长并调节 WNT 信号传导

阅读:5
作者:Saeed Alghamdi, Irfan Khan, Naimisha Beeravolu, Christina McKee, Bryan Thibodeau, George Wilson, G Rasul Chaudhry3

Background

Efficacy and safety of anticancer drugs are traditionally studied using cancer cell lines and animal models. The thienodiazepine class of BET inhibitors, such as JQ1, has been extensively studied for the potential treatment of hematological malignancies and several small molecules belonging to this class are currently under clinical investigation. While these compounds are well known to inhibit cancer cell growth and cause apoptosis, their effects on stem cells, particularly mesenchymal stem cells (MSCs), which are important for regeneration of damaged cells and tissues, are unknown. In this study we employed umbilical cord derived MSCs as a model system to evaluate the safety of JQ1.

Conclusions

This study revealed for the first time that JQ1 adversely affected MSCs, which are important for repair and regeneration. JQ1 specifically modulated signal transduction and inhibited growth as well as self-renewal. These findings suggest that perinatal MSCs could be used to supplement animal models for investigating the safety of anticancer agents and other drugs.

Methods

Cord derived MSCs were treated with various doses of JQ1 and subjected to cell metabolic activity, apoptosis, and cell cycle analyses using MTT assay, Annexin-V/FITC and PI staining, and flow cytometry, respectively. The effect of JQ1 on gene expression was determined using microarray and quantitative real-time reverse transcriptase polymerase chain reaction analysis. Furthermore, protein expression of apoptotic and neuronal markers was carried out using western blot and immunostaining, respectively.

Results

Our results showed that JQ1 inhibited cell growth and caused cell cycle arrest in G1 phase but did not induce apoptosis or senescence. JQ1 also down-regulated genes involved in self-renewal, cell cycle, DNA replication, and mitosis, which may have negative implications on the regenerative potential of MSCs. In addition, JQ1 interfered with signaling pathways by down regulating the expression of WNT, resulting in limiting the self-renewal. These results suggest that anticancer agents belonging to the thienodiazepine class of BET inhibitors should be carefully evaluated before their use in cancer therapy. Conclusions: This study revealed for the first time that JQ1 adversely affected MSCs, which are important for repair and regeneration. JQ1 specifically modulated signal transduction and inhibited growth as well as self-renewal. These findings suggest that perinatal MSCs could be used to supplement animal models for investigating the safety of anticancer agents and other drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。