Transient activation of YAP/TAZ confers resistance to morusin-induced apoptosis

YAP/TAZ的瞬时激活赋予细胞对莫鲁辛诱导的细胞凋亡的抵抗力

阅读:2
作者:Hoyeon Lee # ,Sang Woo Cho # ,Hyo Sun Cha ,Kun Tae ,Cheol Yong Choi

Background

The Hippo signaling pathway involves a kinase cascade that controls phosphorylation of the effector proteins YAP and TAZ, leading to regulation of cell growth, tissue homeostasis, and apoptosis. Morusin, a compound extracted from Morus alba, has shown potential in cancer therapy by targeting multiple signaling pathways, including the PI3K/Akt/mTOR, JAK/STAT, MAPK/ERK, and apoptosis pathways. This study explores the effects of morusin on YAP activation and its implications for apoptosis resistance.

Conclusions

These findings suggest that YAP/TAZ are crucial in resistance to morusin-induced apoptosis, and targeting YAP/TAZ could enhance the anti-cancer efficacy of morusin. Our study provides new insights into the molecular mechanisms of morusin, highlighting potential therapeutic strategies against cancer by disrupting apoptosis resistance.

Results

Our investigation revealed that morusin induces transient YAP activation, characterized by the dephosphorylation of YAP at S127 and nuclear localization, followed by gradual rephosphorylation in multiple cancer cells. Notably, this activation occurs independently of the canonical Hippo pathway and involves the LATS1/2, MINK1, and MAPK pathways during the YAP inactivation stage. Furthermore, morusin-induced stress granule formation was significantly impaired in YAP/TAZ-depleted cells, suggesting a role in apoptosis resistance. Additionally, the expression of constitutively active MINK1 maintained YAP activation and reduced apoptosis, indicating that prolonged YAP activation can enhance resistance to cell death. Conclusions: These findings suggest that YAP/TAZ are crucial in resistance to morusin-induced apoptosis, and targeting YAP/TAZ could enhance the anti-cancer efficacy of morusin. Our study provides new insights into the molecular mechanisms of morusin, highlighting potential therapeutic strategies against cancer by disrupting apoptosis resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。