Human adipose tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC expression increasing proliferation but bypassing spontaneous cell transformation

在无异种培养条件下培养的人类脂肪组织来源的干细胞可增强 c-MYC 表达,促进增殖,但绕过自发细胞转化

阅读:6
作者:Ana C C Paula, Thaís M M Martins, Alessandra Zonari, Soraia P P J Frade, Patrícia C Angelo, Dawidson A Gomes, Alfredo M Goes

Conclusions

This complete characterization of hASCs cultivated in pooled allogeneic human serum, a suitable xeno-free approach, shows that pooled allogeneic human serum provides a high proliferation rate, which can be attributed for the first time to C-MYC protein expression, and showed cell stability for safe clinical applications in compliance with good manufacturing practice.

Methods

hASCs were expanded in Dulbecco's modified Eagle's medium supplemented with pooled allogeneic human serum or fetal bovine serum to enable a side-by-side comparison. Cell viability and differentiation capacity toward the mesenchymal lineages were assessed, along with immunophenotype. Ki-67 expression and the proliferation kinetics were investigated. The expression of the transcription factors c-FOS and c-MYC was examined with Western blot, and MYC, CDKN2A, ERBB2 and TERT gene expression was assessed with quantitative PCR. Senescence was evaluated by β-gal staining. Karyotype analysis was performed and tumorigenesis assay in vivo was also evaluated.

Results

The hASCs expanded in medium with pooled allogeneic human serum did not show remarkable differences in morphology, viability, differentiation capacity or immunophenotype. The main difference observed was a significantly higher proliferative effect on hASCs cultured in pooled allogeneic human serum. There was no significant difference in C-FOS expression; however, C-MYC protein expression was enhanced in pooled allogeneic human serum cultures compared to fetal bovine serum cultures. No difference was observed in MYC and TERT mRNA levels. Moreover, the hASCs presented normal karyotype undergoing senescence, and did not form in vivo tumors, eliminating the possibility that spontaneous immortalization of hASCs had occurred with pooled allogeneic human serum. Conclusions: This complete characterization of hASCs cultivated in pooled allogeneic human serum, a suitable xeno-free approach, shows that pooled allogeneic human serum provides a high proliferation rate, which can be attributed for the first time to C-MYC protein expression, and showed cell stability for safe clinical applications in compliance with good manufacturing practice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。