Expression of thermostable MMLV reverse transcriptase in Escherichia coli by directed mutation

定向诱变表达耐热MMLV逆转录酶在大肠杆菌中

阅读:5
作者:Marzieh Divbandi, Ahad Yamchi, Hadi Razavi Nikoo, Abdolvahab Moradi, Alijan Tabarraei

Abstract

The functionality of Moloney murine leukemia virus reverse transcriptase (MMLV RT) will increase with the improvement of its solubility and thermal stability. Introduce directed mutation at specific positions of the MMLV RT sequence and codon optimization is needed to achieve these properties. The two RT coding sequences with (rRT-K) and without directed mutations (rRT-L) were versatility optimized and expressed to analyze the ribonuclease H (RNase H) inactivity and thermostable polymerase activity. For this purpose, the five-point mutations (438-442aa) and three-point mutations (530, 568, and 659 aa) were done at the RT connection domain and RNase H active site, respectively. High expression levels of rRT-L and rRT-K were obtained in E. coli BL21(DE3) and BL21(shuffle) strains, 0.5 mM IPTG concentration at 37 °C, and 8 hours' post-induction condition. Then, recombinant enzymes were purified and verified by Ni-NTA resin and western blotting. Insilico analysis (IUpred 3.0) showed that the directed mutation in the RNase H domain caused the formation of disorder regions or instability in the RNase H domain of rRT-K compared to rRT-L. The modified RT-PCR and the RT-LAMP reactions proved the RNase H inactivity of rRT-K. In addition, increasing of thermostability of rRT-K compared to rRT-L and commercial RT was evaluated by the RT-PCR and RT-LAMP reactions. The results showed that rRT-K could successfully tolerate 60 ºC in the two methods. This study revealed that the directed mutations and the versatile sequence optimization can promise to produce thermostable commercial enzymes to decrease non-specific one-step RT-PCR and RT-LAMP products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。