Optimizing mesoderm progenitor selection and three-dimensional microniche culture allows highly efficient endothelial differentiation and ischemic tissue repair from human pluripotent stem cells

优化中胚层祖细胞选择和三维微环境培养可实现人类多能干细胞高效内皮分化和缺血组织修复

阅读:8
作者:Fengzhi Zhang, Lin Wang, Yaqian Li, Wei Liu, Fuyu Duan, Rujin Huang, Xi Chen, Sophia Chia-Ning Chang, Yanan Du, Jie Na

Background

Generation of large quantities of endothelial cells is highly desirable for vascular research, for the treatment of ischemia diseases, and for tissue regeneration. To achieve this goal, we developed a simple, chemically defined culture system to efficiently and rapidly differentiate endothelial cells from human pluripotent stem cells by going through an MESP1 mesoderm progenitor stage.

Conclusions

Our study demonstrates that combining MESP1+ mesoderm progenitor cells with tissue-engineered 3D microniche and a chemically defined endothelial induction medium is a promising route to maximizing the production of endothelial cells in vitro and augment their regenerative power in vivo.

Methods

Mesp1 is a key transcription factor that regulates the development of early cardiovascular tissue. Using an MESP1-mTomato knock-in reporter human embryonic stem cell line, we compared the gene expression profiles of MESP1+ and MESP1- cells and identified new signaling pathways that may promote endothelial differentiation. We also used a 3D scaffold to mimic the in vivo microenvironment to further improve the efficiency of endothelial cell generation. Finally, we performed cell transplantation into a critical limb ischemia mouse model to test the repairing potential of endothelial-primed MESP1+ cells.

Results

MESP1+ mesoderm progenitors, but not MESP1- cells, have strong endothelial differentiation potential. Global gene expression analysis revealed that transcription factors essential for early endothelial differentiation were enriched in MESP1+ cells. Interestingly, MESP1 cells highly expressed Sphingosine-1-phosphate (S1P) receptor and the addition of S1P significantly increased the endothelial differentiation efficiency. Upon seeding in a novel 3D microniche and priming with VEGF and bFGF, MESP1+ cells markedly upregulated genes related to vessel development and regeneration. 3D microniches also enabled long-term endothelial differentiation and proliferation from MESP1+ cells with minimal medium supplements. Finally, we showed that transplanting a small number of endothelial-primed MESP1+ cells in 3D microniches was sufficient to mediate rapid repair of a mouse model of critical limb ischemia. Conclusions: Our study demonstrates that combining MESP1+ mesoderm progenitor cells with tissue-engineered 3D microniche and a chemically defined endothelial induction medium is a promising route to maximizing the production of endothelial cells in vitro and augment their regenerative power in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。