Evaluation of CDK9 Inhibition by Dinaciclib in Combination with Apoptosis Modulating izTRAIL for the Treatment of Colorectal Cancer

评估 Dinaciclib 抑制 CDK9 联合调节凋亡的 izTRAIL 治疗结直肠癌的效果

阅读:5
作者:Xiao Shen, Anna-Laura Kretz, Sandra Schneider, Uwe Knippschild, Doris Henne-Bruns, Marko Kornmann, Johannes Lemke, Benno Traub

Abstract

Treatment options for colorectal cancer (CRC), especially in advanced stages are still insufficient. There, the discovery of Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) was a bright spot. However, most cancers show resistance toward apoptotic signals. Cyclin-dependent kinase 9 (CDK9) plays a crucial role in cell cycle progression in most tissues. We recently demonstrated the role of CDK9 in mediating TRAIL resistance. In this work, we investigated the role of CDK9 in colorectal cancer. Immunohistochemical analysis of CDK9 expression in cancer and normal tissues of CRC specimens was performed. The effect of selective CDK9 inhibition in combination with TRAIL on CRC cells was analyzed via cell viability, colony formation, and induction of apoptosis by flow cytometry. The mechanism of action was conducted via western blotting. We now have confirmed overexpression of CDK9 in cancer tissues, with low expression associated with poorer survival in a subset of CRC patients. In-vitro, CDK9 inhibition could strongly promote TRAIL-induced cell death in TRAIL-resistant CRC cells. Mechanistically, CDK9 inhibition induced apoptosis by downregulation of antiapoptotic proteins, myeloid leukemia cell differentiation protein 1 (Mcl-1) and FLICE-inhibitory protein (c-FLIP). Overall, we identified CDK9 as a prognostic marker and combined CDK9 inhibition and TRAIL as a novel and promising therapeutic approaches for colorectal cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。