How to Look for Compounds: Predictive Screening and in situ Studies in Na-Zn-Bi System

如何寻找化合物:Na-Zn-Bi 体系的预测筛选和原位研究

阅读:7
作者:Volodymyr Gvozdetskyi, Renhai Wang, Weiyi Xia, Feng Zhang, Zijing Lin, Kai-Ming Ho, Gordon Miller, Julia V Zaikina

Abstract

Here, the combination of theoretical computations followed by rapid experimental screening and in situ diffraction studies is demonstrated as a powerful strategy for novel compounds discovery. When applied for the previously "empty" Na-Zn-Bi system, such an approach led to four novel phases. The compositional space of this system was rapidly screened via the hydride route method and the theoretically predicted NaZnBi (PbClF type, P4/nmm) and Na11 Zn2 Bi5 (Na11 Cd2 Sb5 type, P ¯11‾<math><mover><mn>1</mn> <mo>‾</mo></mover> </math> ) phases were successfully synthesized, while other computationally generated compounds on the list were rejected. In addition, single crystal X-ray diffraction studies of NaZnBi indicate minor deviations from the stoichiometric 1 : 1 : 1 molar ratio. As a result, two isostructural (PbClF type, P4/nmm) Zn-deficient phases with similar compositions, but distinctly different unit cell parameters were discovered. The vacancies on Zn sites and unit cell expansion were rationalized from bonding analysis using electronic structure calculations on stoichiometric "NaZnBi". In-situ synchrotron powder X-ray diffraction studies shed light on complex equilibria in the Na-Zn-Bi system at elevated temperatures. In particular, the high-temperature polymorph HT-Na3 Bi (BiF3 type, Fm ¯33‾<math><mover><mn>3</mn> <mo>‾</mo></mover> </math> m) was obtained as a product of Na11 Zn2 Bi5 decomposition above 611 K. HT-Na3 Bi cannot be stabilized at room temperature by quenching, and this type of structure was earlier observed in the high-pressure polymorph HP-Na3 Bi above 0.5 GPa. The aforementioned approach of predictive synthesis can be extended to other multinary systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。