Microbial Functional Responses Explain Alpine Soil Carbon Fluxes under Future Climate Scenarios

微生物功能响应解释未来气候情景下高山土壤碳通量

阅读:3
作者:Qi Qi, Yue Haowei, Zhenhua Zhang, Joy D Van Nostrand, Linwei Wu, Xue Guo, Jiajie Feng, Mengmeng Wang, Sihang Yang, Jianshu Zhao, Qun Gao, Qiuting Zhang, Mengxin Zhao, Changyi Xie, Zhiyuan Ma, Jin-Sheng He, Haiyan Chu, Yi Huang, Jizhong Zhou, Yunfeng Yang3

Abstract

Soil microorganisms are sensitive to temperature in cold ecosystems, but it remains unclear how microbial responses are modulated by other important climate drivers, such as precipitation changes. Here, we examine the effects of six in situ warming and/or precipitation treatments in alpine grasslands on microbial communities, plants, and soil carbon fluxes. These treatments differentially affected soil carbon fluxes, gross primary production, and microbial communities. Variations of soil CO2 and CH4 fluxes across all sites significantly (r > 0.70, P < 0.050) correlated with relevant microbial functional abundances but not bacterial or fungal abundances. Given tight linkages between microbial functional traits and ecosystem functionality, we conclude that future soil carbon fluxes in alpine grasslands can be predicted by microbial carbon-degrading capacities.IMPORTANCE The warming pace in the Tibetan Plateau, which is predominantly occupied by grassland ecosystems, has been 0.2°C per decade in recent years, dwarfing the rate of global warming by a factor of 2. Many Earth system models project substantial carbon sequestration in Tibet, which has been observed. Here, we analyzed microbial communities under projected climate changes by 2100. As the soil "carbon pump," the growth and activity of microorganisms can largely influence soil carbon dynamics. However, microbial gene response to future climate scenarios is still obscure. We showed that the abundances of microbial functional genes, but not microbial taxonomy, were correlated with carbon fluxes and ecosystem multifunctionality. By identifying microbial traits linking to ecosystem functioning, our results can guide the assessment of future soil carbon fluxes in alpine grasslands, a critical step toward mitigating climate changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。