Efficiency and safety of O⁶-methylguanine DNA methyltransferase (MGMT(P140K))-mediated in vivo selection in a humanized mouse model

O⁶-甲基鸟嘌呤 DNA 甲基转移酶 (MGMT(P140K)) 介导的人源化小鼠体内选择的有效性和安全性

阅读:5
作者:Ruhi Phaltane, Reinhard Haemmerle, Michael Rothe, Ute Modlich, Thomas Moritz

Abstract

Efficient O&sup6;-methylguanine DNA methyltransferase (MGMT(P140K))-mediated myeloprotection and in vivo selection have been demonstrated in numerous animal models and most recently in a phase I clinical study in glioblastoma patients. However, this strategy may augment the genotoxic risk of integrating vectors because of chemotherapy-induced DNA damage and the proliferative stress exerted during the in vivo selection. Thus, to improve the safety of the procedure, we evaluated a self-inactivating lentiviral MGMT(P140K) vector for transduction of human cord blood-derived CD34⁺ cells followed by transplantation of the cells into NOD/LtSz-scid/Il2rγ⁻/⁻ mice. These experiments demonstrated significant and stable enrichment of MGMT(P140K) transgenic human cells in the murine peripheral blood and bone marrow. Clonal inventory analysis utilizing linear amplification-mediated polymerase chain reaction and high-throughput sequencing revealed a characteristic lentiviral integration profile. Among the bone marrow insertions retrieved, we observed considerable overlap to previous MGMT(P140K) preclinical models or the clinical study. However, no significant differences between our chemotherapy-treated and nontreated cohorts were observed. This also hold true when specific cancer gene databases and a functional annotation of hit genes by the Panther Database with respect to molecular function, biological process, or cellular component were assessed. Thus, in summary, our data demonstrate efficient and long-term in vivo selection without overt hematological abnormalities using the lentiviral MGMT(P140K) vector. Furthermore, the study introduces humanized mouse models as a novel tool for the pre-clinical assessment of human gene therapy related toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。