Extracellular vesicles from differentiated stem cells contain novel proangiogenic miRNAs and induce angiogenic responses at low doses

分化干细胞的细胞外囊泡含有新型促血管生成 miRNA,低剂量即可诱导血管生成反应

阅读:4
作者:Despoina Kesidou, Matthew Bennett, João P Monteiro, Ian R McCracken, Eftychia Klimi, Julie Rodor, Alison Condie, Scott Cowan, Andrea Caporali, Jan B M Wit, Joanne C Mountford, Mairi Brittan, Abdelaziz Beqqali, Andrew H Baker

Abstract

Extracellular vesicles (EVs) released from healthy endothelial cells (ECs) have shown potential for promoting angiogenesis, but their therapeutic efficacy remains poorly understood. We have previously shown that transplantation of a human embryonic stem cell-derived endothelial cell product (hESC-ECP), promotes new vessel formation in acute ischemic disease in mice, likely via paracrine mechanism(s). Here, we demonstrated that EVs from hESC-ECPs (hESC-eEVs) significantly increased EC tube formation and wound closure in vitro at ultralow doses, whereas higher doses were ineffective. More important, EVs isolated from the mesodermal stage of the differentiation (hESC-mEVs) had no effect. Small RNA sequencing revealed that hESC-eEVs have a unique transcriptomic profile and are enriched in known proangiogenic microRNAs (miRNAs, miRs). Moreover, an in silico analysis identified three novel hESC-eEV-miRNAs with potential proangiogenic function. Differential expression analysis suggested that two of those, miR-4496 and miR-4691-5p, are highly enriched in hESC-eEVs. Overexpression of miR-4496 or miR-4691-5p resulted in increased EC tube formation and wound closure in vitro, validating the novel proangiogenic function of these miRNAs. In summary, we demonstrated that hESC-eEVs are potent inducers of EC angiogenic response at ultralow doses and contain a unique EV-associated miRNA repertoire, including miR-4496 and miR-4691-5p, with novel proangiogenic function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。