Identification of novel amelogenin-binding proteins by proteomics analysis

通过蛋白质组学分析鉴定新型牙釉蛋白结合蛋白

阅读:5
作者:Takao Fukuda, Terukazu Sanui, Kyosuke Toyoda, Urara Tanaka, Takaharu Taketomi, Takeshi Uchiumi, Fusanori Nishimura

Abstract

Emdogain (enamel matrix derivative, EMD) is well recognized in periodontology. It is used in periodontal surgery to regenerate cementum, periodontal ligament, and alveolar bone. However, the precise molecular mechanisms underlying periodontal regeneration are still unclear. In this study, we investigated the proteins bound to amelogenin, which are suggested to play a pivotal role in promoting periodontal tissue regeneration. To identify new molecules that interact with amelogenin and are involved in osteoblast activation, we employed coupling affinity chromatography with proteomic analysis in fractionated SaOS-2 osteoblastic cell lysate. In SaOS-2 cells, many of the amelogenin-interacting proteins in the cytoplasm were mainly cytoskeletal proteins and several chaperone molecules of heat shock protein 70 (HSP70) family. On the other hand, the proteomic profiles of amelogenin-interacting proteins in the membrane fraction of the cell extracts were quite different from those of the cytosolic-fraction. They were mainly endoplasmic reticulum (ER)-associated proteins, with lesser quantities of mitochondrial proteins and nucleoprotein. Among the identified amelogenin-interacting proteins, we validated the biological interaction of amelogenin with glucose-regulated protein 78 (Grp78/Bip), which was identified in both cytosolic and membrane-enriched fractions. Confocal co-localization experiment strongly suggested that Grp78/Bip could be an amelogenin receptor candidate. Further biological evaluations were examined by Grp78/Bip knockdown analysis with and without amelogenin. Within the limits of the present study, the interaction of amelogenin with Grp78/Bip contributed to cell proliferation, rather than correlate with the osteogenic differentiation in SaOS-2 cells. Although the biological significance of other interactions are not yet explored, these findings suggest that the differential effects of amelogenin-derived osteoblast activation could be of potential clinical significance for understanding the cellular and molecular bases of amelogenin-induced periodontal tissue regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。