Opto-chemogenetic inhibition of L-type CaV1 channels in neurons through a membrane-assisted molecular linkage

通过膜辅助分子连接对神经元中的 L 型 CaV1 通道进行光化学遗传抑制

阅读:4
作者:Jinli Geng, Yaxiong Yang, Boying Li, Zhen Yu, Shuang Qiu, Wen Zhang, Shixin Gao, Nan Liu, Yi Liu, Bo Wang, Yubo Fan, Chengfen Xing, Xiaodong Liu

Abstract

Genetically encoded inhibitors of CaV1 channels that operate via C-terminus-mediated inhibition (CMI) have been actively pursued. Here, we advance the design of CMI peptides by proposing a membrane-anchoring tag that is sufficient to link the inhibitory modules to the target channel as well as chemical and optogenetic modes of system control. We designed and implemented the constitutive and inducible CMI modules with appropriate dynamic ranges for the short and long variants of CaV1.3, both naturally occurring in neurons. Upon optical (near-infrared-responsive nanoparticles) and/or chemical (rapamycin) induction of FRB/FKBP binding, the designed peptides translocated onto the membrane via FRB-Ras, where the physical linkage requirement for CMI could be satisfied. The peptides robustly produced acute, potent, and specific inhibitions on both recombinant and neuronal CaV1 activities, including Ca2+ influx-neuritogenesis coupling. Validated through opto-chemogenetic induction, this prototype demonstrates Ca2+ channel modulation via membrane-assisted molecular linkage, promising broad applicability to diverse membrane proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。