Recombinant vesicular stomatitis virus transduction of dendritic cells enhances their ability to prime innate and adaptive antitumor immunity

重组水泡性口炎病毒转导树突状细胞增强其启动先天性和适应性抗肿瘤免疫的能力

阅读:13
作者:Jeanette E Boudreau, Byram W Bridle, Kyle B Stephenson, Kristina M Jenkins, Jérôme Brunellière, Jonathan L Bramson, Brian D Lichty, Yonghong Wan

Abstract

Dendritic cell (DC)-based vaccines are a promising strategy for tumor immunotherapy due to their ability to activate both antigen-specific T-cell immunity and innate immune effector components, including natural killer (NK) cells. However, the optimal mode of antigen delivery and DC activation remains to be determined. Using M protein mutant vesicular stomatitis virus (DeltaM51-VSV) as a gene-delivery vector, we demonstrate that a high level of transgene expression could be achieved in approximately 70% of DCs without affecting cell viability. Furthermore, DeltaM51-VSV infection activated DCs to produce proinflammatory cytokines (interleukin-12, tumor necrosis factor-alpha, and interferon (IFN)alpha/beta), and to display a mature phenotype (CD40(high)CD86(high) major histocompatibility complex (MHC II)(high)). When delivered to mice bearing 10-day-old lung metastatic tumors, DCs infected with DeltaM51-VSV encoding a tumor-associated antigen mediated significant control of tumor growth by engaging both NK and CD8(+) T cells. Importantly, depletion of NK cells completely abrogated tumor destruction, indicating that NK cells play a critical role for this DC vaccine-induced therapeutic outcome. Our findings identify DeltaM51-VSV as both an efficient gene-delivery vector and a maturation agent allowing DC vaccines to overcome immunosuppression in the tumor-bearing host.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。