Proteome-wide profiling of protein lysine acetylation in Aspergillus flavus

黄曲霉中蛋白质赖氨酸乙酰化的蛋白质组分析

阅读:9
作者:Yangyong Lv

Abstract

Protein lysine acetylation is a prevalent post-translational modification that plays pivotal roles in various biological processes in both prokaryotes and eukaryotes. Aspergillus flavus, as an aflatoxin-producing fungus, has attracted tremendous attention due to its health impact on agricultural commodities. Here, we performed the first lysine-acetylome mapping in this filamentous fungus using immune-affinity-based purification integrated with high-resolution mass spectrometry. Overall, we identified 1383 lysine-acetylation sites in 652 acetylated proteins, which account for 5.18% of the total proteins in A. flavus. According to bioinformatics analysis, the acetylated proteins are involved in various cellular processes involving the ribosome, carbon metabolism, antibiotic biosynthesis, secondary metabolites, and the citrate cycle and are distributed in diverse subcellular locations. Additionally, we demonstrated for the first time the acetylation of fatty acid synthase α and β encoded by aflA and aflB involved in the aflatoxin-biosynthesis pathway (cluster 54), as well as backbone enzymes from secondary metabolite clusters 20 and 21 encoded by AFLA_062860 and AFLA_064240, suggesting important roles for acetylation associated with these processes. Our findings illustrating abundant lysine acetylation in A. flavus expand our understanding of the fungal acetylome and provided insight into the regulatory roles of acetylation in secondary metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。