Lateral diffusion on tubular membranes: quantification of measurements bias

管状膜上的横向扩散:测量偏差的量化

阅读:8
作者:Marianne Renner, Yegor Domanov, Fanny Sandrin, Ignacio Izeddin, Patricia Bassereau, Antoine Triller

Abstract

Single Particle Tracking (SPT) is a powerful technique for the analysis of the lateral diffusion of the lipid and protein components of biological membranes. In neurons, SPT allows the study of the real-time dynamics of receptors for neurotransmitters that diffuse continuously in and out synapses. In the simplest case where the membrane is flat and is parallel to the focal plane of the microscope the analysis of diffusion from SPT data is relatively straightforward. However, in most biological samples the membranes are curved, which complicates analysis and may lead to erroneous conclusions as for the mode of lateral diffusion. Here we considered the case of lateral diffusion in tubular membranes, such as axons, dendrites or the neck of dendritic spines. Monte Carlo simulations allowed us to evaluate the error in diffusion coefficient (D) calculation if the curvature is not taken into account. The underestimation is determined by the diameter of the tubular surface, the frequency of image acquisition and the degree of mobility itself. We found that projected trajectories give estimates that are 25 to 50% lower than the real D in case of 2D-SPT over the tubular surface. The use of 3D-SPT improved the measurements if the frequency of image acquisition was fast enough in relation to the mobility of the molecules and the diameter of the tube. Nevertheless, the calculation of D from the components of displacements in the axis of the tubular structure gave accurate estimate of D, free of geometrical artefacts. We show the application of this approach to analyze the diffusion of a lipid on model tubular membranes and of a membrane-bound GFP on neurites from cultured rat hippocampal neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。