Influence of surface treatment and curing mode of resin composite cements on fibroblast behavior

复合树脂水泥表面处理及固化方式对成纤维细胞行为的影响

阅读:8
作者:Nadja Rohr #, Celina Baumann #, Sabrina Märtin, Nicola U Zitzmann

Background

Human gingival fibroblast (HGF-1) cells in the connective tissue provide an effective barrier between the alveolar bone and the oral environment. Cement margins of restorations with intrasulcular preparation or cemented implant restorations are in contact with HGF cells. However, it is unknown to what extend the cement surface finish affects the behavior of HGF cells. The

Conclusions

HGF cell viability is affected by the surface treatment and the curing mode. The oxygen inhibition layer is an inhibitory factor for the viability of HGF cells. Autopolymerization enhances the cytotoxic potential of the oxygen inhibition layer.

Methods

Disks of one adhesive (Multilink Automix, Ivoclar Vivadent [MLA]) and one self-adhesive (RelyX Unicem 2 Automix, 3 M [RUN]) resin composite cement were either light-cured or autopolymerized. Specimen surfaces were prepared with the oxygen inhibition layer intact, polished with P2500-grit silicon carbide paper or treated with a scaler. Cells were cultivated on the specimens for 24 h. Viability assay was performed, and cell morphology was examined with scanning electron microscopy. Additionally, roughness parameters of the specimen were analyzed with a 3D laser scanning microscope. Three-way ANOVA was applied to determine the effect of cement material, curing mode and surface treatment (a = 0.05).

Results

Overall, cement material (p = 0.031), curing mode (p = 0.001), and surface treatment (p < 0.001) significantly affected relative cell viability of HGF. The autopolymerized specimen with the oxygen inhibition layer left intact displayed the lowest relative cell viability (MLA 25.7%, RUN 46.6%). Removal of the oxygen inhibition layer with a scaler increased cell viability but also resulted in higher surface roughness values. Conclusions: HGF cell viability is affected by the surface treatment and the curing mode. The oxygen inhibition layer is an inhibitory factor for the viability of HGF cells. Autopolymerization enhances the cytotoxic potential of the oxygen inhibition layer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。