Lipid Droplets Accumulation in the Brain of HIV Transgenic Rat: Implication in the Accelerated Aging of HIV Infected Individuals

HIV 转基因大鼠脑内脂滴积聚:与 HIV 感染者加速衰老有关

阅读:15
作者:Ming-Lei Guo, Yan Cheng, Damian Martinez Pineda, Rachael E Dempsey, Lifang Yang

Abstract

Abnormal microglial activation has been suggested as "driven force" promoting brain aging. Lipid droplets accumulating microglia (LDAM), identified as a novel inflammatory phenotype, elevate neuroinflammation and exaggerate neuronal injuries in aging and multiple neurodegenerative diseases. Since chronic HIV (human immunodeficiency virus) (+) individuals show an accelerated brain aging and higher incidence of neurological symptoms compared to age-matched HIV (-) population, we hypothesize that LDAM are also involved in such phenomenon. For validating the hypothesis, we employed HIV transgenic (HIV-Tg) and wilt type (WT) rats to check lipid droplets (LDs) accumulation in the brains at mature (6 months) and middle age (12 months). Our results showed that HIV-Tg rats possess higher levels of LDs formation in the hippocampus (HP) and prefrontal cortex (PFc) than controls at middle age. Increased LDs are mainly presented in microglia in the HP but largely co-localized with astrocytes in the PFc. Interestingly, increased LDs are associated with upregulation on Iba1 but not with GFAP levels. HIV-Tg rats reveal an accelerated LDs accumulation during normal aging. Purified microglia from HIV-Tg rats (12 month) show higher expression of neuroimmune signaling than microglia from controls. HIV-Tg rats showed dysregulation on cholesterol synthesis in the brain HP as well as deficiency on locomotion coordination compared to controls. Overall, our results demonstrate substantial LDs accumulation in the brains of HIV-Tg rats which is associated with abnormal microglial activation and accelerated decline on locomotion coordination during aging. Dysregulation on lipid metabolism might underlie accelerated brain aging in the context of chronic HIV infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。