In Vivo Imaging of Implanted Hyaluronic Acid Hydrogel Biodegradation

植入透明质酸水凝胶生物降解的体内成像

阅读:5
作者:Shreyas Kuddannaya, Wei Zhu, Jeff W M Bulte

Abstract

Although the use of stem cell therapy for central nervous system (CNS) repair has shown considerable promise, it is still limited by the immediate death of a large fraction of transplanted cells owing to cell handling procedures, injection stress and host immune attack leading to poor therapeutic outcomes. Scaffolding cells in hydrogels is known to protect cells from such immediate death by shielding them from mechanical damage and by averting an immune attack after transplantation. Implanted hydrogels must eventually degrade and facilitate a safe integration of the graft with the surrounding host tissue. Hence, serial monitoring of hydrogel degradation in vivo is pivotal to optimize hydrogel compositions and overall therapeutic efficacy of the graft. We present here methods and protocols to use chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) as a non-invasive, label-free imaging paradigm to monitor the degradation of composite hydrogels made up of thiolated gelatin (Gel-SH), thiolated hyaluronic acid (HA-SH), and poly (ethylene glycol) diacrylate (PEGDA), of which the stiffness and CEST contrast can be fine-tuned by simply varying the composite concentrations and mixing ratios. By individually labeling Gel-S and HA-S with two distinct near-infrared (NIR) dyes, multispectral monitoring of the relative degradation of the components can be used for long-term validation of the CEST MRI findings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。