Peptides derived from cadherin juxtamembrane region inhibit platelet function

源自钙粘蛋白近膜区的肽可抑制血小板功能

阅读:8
作者:Kalyan Golla, Ilias Stavropoulos, Denis C Shields, Niamh Moran

Abstract

The juxtamembrane domains (JMD) of transmembrane proteins are rich in critical peptide sequences that participate in dynamic cell signalling events. Synthetic JMD peptides derived from cadherin cell adhesion proteins have previously been shown to modulate platelet function. In this study, we aimed to develop functional bioactive agents from bioinformatically identified critical peptide sequences. We synthesized overlapping 12-15 amino acid peptides from E- and N-cadherin JMD and assessed their effect on platelet aggregation and platelet ATP secretion. Peptides derived from close to the membrane proximal region inhibit platelet function. Sequential deletion of amino acids from the N- and C-termini of the inhibitory E-cadherin peptides identified the short K756EPLLP763 motif as a critical bioactive sequence. Alanine scanning studies further identified that the di-leucine (LL) motif and positively charged lysine (K) are crucial for peptide activity. Moreover, scrambled peptides failed to show any effect on platelet activity. We conclude that peptides derived from JMD of E-cadherin provide potential lead peptides for the development of anti-thrombotic agents and to enable further understanding of the role of cadherins in platelet function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。