Voltage-Dependent Anion Channel-1, a Possible Ligand of Plasminogen Kringle 5

电压依赖性阴离子通道-1,纤溶酶原 Kringle 5 的可能配体

阅读:5
作者:Yin-Ku Liang, Liu-Jiao Bian

Abstract

Kringle 5, the fifth fragment of plasminogen, is known to be important for inhibiting the proliferation and migration of vascular endothelial cell (VEC), while not having any effects on normal endothelial cells. Therefore, it may be a potential tumor therapy candidate. However, the ligand of the Kringle 5 in VEC has not yet been identified. In this study, the possible ligand of Kringle 5 in vitro was screened and validated using Ph.D.-7 phage display peptide library with molecular docking, along with surface plasma resonance (SPR). After four rounds of panning, the specific clones of Kringle 5 were confirmed using enzyme-linked immunosorbent assay (ELISA). The gene sequence analysis showed that they expressed the common amino sequence IGNSNTL. Then, using a NCBI BLAST, 103 matching sequences were found. Following the molecular docking evaluation and considering the acting function and pathway of the plasminogen Kringle 5 in the human body, the most promising candidate was determined to be voltage-dependent anion channel-1 (VDAC-1), which was able to bind to Kringle 5 at -822.65 J·mol-1 of the binding energy at the residues of Lys12, Thr19, Ser57, Thr188, Arg139, Asn214, Ser240 and Lys274. A strong dose-dependent interaction occurred between the VDAC-1 and Kringle 5 (binding constant 2.43 × 103 L·mol-1) in SPR observation. Therefore, this study proposed that VDAC-1 was a potential ligand of plasminogen Kringle 5, and also demonstrated that the screening and validation of protein ligand using phage display peptide library with the molecular docking, along with SPR, was a practicable application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。