Integrated Starches and Physicochemical Characterization of Sorghum Cultivars for an Efficient and Sustainable Intercropping Model

综合分析高粱品种的淀粉和理化特性,实现高效、可持续的间作模式

阅读:4
作者:Maw Ni Soe Htet, Honglu Wang, Lixin Tian, Vivek Yadav, Hamz Ali Samoon, Baili Feng

Abstract

Sorghum has good adaptation to drought tolerance and can be successfully cultivated on marginal lands with low input cost. Starch is used in many foods and nonfood industrial applications and as a renewable energy resource. Sorghum starches with different amylose contents affect the different physicochemical properties. In this study, we isolated starches from six sorghum varieties (i.e., Jinza 34, Liaoza 19, Jinnuo 3, Jiza 127, Jiniang 2, and Jiaxian) and investigated them in terms of their chemical compositions and physicochemical properties. All the starch granules had regular polygonal round shapes and showed the characteristic "Maltese cross". These six sorghum starches showed an A-type diffraction pattern. The highest amylose content of starch in Jinza 127 was 26.90%. Jiaxian had a higher water solubility at 30, 70, and 90 °C. From the flow cytometry analysis based on six sorghum starch granules, Liaoza 19 had a larger and more complex granules (particle percentage (P1) = 66.5%). The Jinza 34 starch had higher peak (4994.00 mPa∙s) and breakdown viscosity (4013.50 mPa∙s) and lower trough viscosity (973.50 mPa∙s). Jinnuo 3 had higher onset temperature, peak temperature, conclusion temperature, gelatinization enthalpy, and gelatinization range. The principal component analysis and hierarchical cluster analysis based on classification of different sorghum starches showed that Jiniang 2 and Jinnuo 3 had similar physicochemical properties and most divergent starches, respectively. Our result provides useful information not only on the use of sorghum starches in food and non-food industries but for the great potential of sorghum-based intercropping systems in maintaining agricultural sustainability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。