Pathogenic Homocystinuria-Associated T236N Mutation Dramatically Alters the Biochemical Properties of Cystathionine Beta-Synthase Protein

致病性同型胱氨酸尿症相关 T236N 突变显著改变了胱硫醚 β-合酶蛋白的生化特性

阅读:8
作者:Duaa W Al-Sadeq, Angelos Thanassoulas, Maria Theodoridou, Gheyath K Nasrallah, Michail Nomikos

Background

Cystathione beta-synthase (CBS) T236N is a novel mutation associated with pyridoxine non-responsiveness, which presents a significant difficulty in the medical treatment of homocystinuria. Reported severe phenotypes in homocystinuria patients highlight the urgent requirement to comprehend the molecular mechanisms underlying mutation pathogenicity for the advancement of the disease. Methodology: In this study, we used a multidisciplinary approach to investigate the molecular properties of bacterially expressed and purified recombinant CBST236N protein, which we directly compared to those of the wild-type (CBSWT) protein.

Conclusions

Our findings provide an explanation of the pathogenicity of the p.T236N mutation, shedding light on its role in severe homocystinuria phenotypes. This study contributes to a deeper understanding of CBS deficiency and may improve the development of targeted therapeutic strategies for affected individuals.

Results

Our data revealed a profound impact of the p.T236N mutation on CBS enzymatic activity, with a dramatic reduction of ~96% compared to the CBSWT protein. Circular dichroism (CD) experiments indicated that the p.T236N mutation did not significantly alter the secondary structure of the protein. However, CD spectra unveiled distinct differences in the thermal stability of CBSWT and CBST236N mutant protein species. In addition, chemical denaturation experiments further highlighted that the CBSWT protein exhibited greater thermodynamic stability than the CBST236N mutant, suggesting a destabilizing effect of this mutation. Conclusions: Our findings provide an explanation of the pathogenicity of the p.T236N mutation, shedding light on its role in severe homocystinuria phenotypes. This study contributes to a deeper understanding of CBS deficiency and may improve the development of targeted therapeutic strategies for affected individuals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。