Second harmonic generation microscopy of early embryonic mouse hearts

小鼠早期胚胎心脏的二次谐波显微镜检查

阅读:4
作者:Andrew L Lopez 3rd, Irina V Larina

Abstract

The understanding of biomechanical regulation of early heart development in genetic mouse models can contribute to improved management of congenital cardiovascular defects and embryonic cardiac failures in humans. The extracellular matrix (ECM), and particularly fibrillar collagen, are central to heart biomechanics, regulating tissue strength, elasticity and contractility. Here, we explore second harmonic generation (SHG) microscopy for visualization of establishing cardiac fibers such as collagen in mouse embryos through the earliest stages of development. We detected significant increase in SHG positive fibrillar content and organization over the first 24 hours after initiation of contractions. SHG microscopy revealed regions of higher fibrillar organization in regions of higher contractility and reduced fibrillar content and organization in mouse Mlc2a model with cardiac contractility defect, suggesting regulatory role of mechanical load in production and organization of structural fibers from the earliest stages. Simultaneous volumetric SHG and two-photon excitation microscopy of vital fluorescent reporter EGFP in the heart was demonstrated. In summary, these data set SHG microscopy as a valuable non-bias imaging tool to investigate mouse embryonic cardiogenesis and biomechanics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。