Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice

通过细胞移植补充胶原蛋白 VI 可改善 Ullrich 先天性肌营养不良症模型小鼠的肌肉再生

阅读:5
作者:Nana Takenaka-Ninagawa, Jinsol Kim, Mingming Zhao, Masae Sato, Tatsuya Jonouchi, Megumi Goto, Clémence Kiho Bourgeois Yoshioka, Rukia Ikeda, Aya Harada, Takahiko Sato, Makoto Ikeya, Akiyoshi Uezumi, Masashi Nakatani, Satoru Noguchi, Hidetoshi Sakurai

Background

Mesenchymal stromal cells (MSCs) function as supportive cells on skeletal muscle homeostasis through several secretory factors including type 6 collagen (COL6). Several mutations of COL6A1, 2, and 3 genes cause Ullrich congenital muscular dystrophy (UCMD). Skeletal muscle regeneration deficiency has been reported as a characteristic phenotype in muscle biopsy samples of human UCMD patients and UCMD model mice. However, little is known about the COL6-dependent mechanism for the occurrence and progression of the deficiency. The

Conclusions

These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice.

Methods

To test whether COL6 supplementation has a therapeutic effect for UCMD, in vivo and in vitro experiments were conducted using four types of MSCs: (1) healthy donors derived-primary MSCs (pMSCs), (2) MSCs derived from healthy donor induced pluripotent stem cell (iMSCs), (3) COL6-knockout iMSCs (COL6KO-iMSCs), and (4) UCMD patient-derived iMSCs (UCMD-iMSCs).

Results

All four MSC types could engraft for at least 12 weeks when transplanted into the tibialis anterior muscles of immunodeficient UCMD model (Col6a1KO) mice. COL6 protein was restored by the MSC transplantation if the MSCs were not COL6-deficient (types 1 and 2). Moreover, muscle regeneration and maturation in Col6a1KO mice were promoted with the transplantation of the COL6-producing MSCs only in the region supplemented with COL6. Skeletal muscle satellite cells derived from UCMD model mice (Col6a1KO-MuSCs) co-cultured with type 1 or 2 MSCs showed improved proliferation, differentiation, and maturation, whereas those co-cultured with type 3 or 4 MSCs did not. Conclusions: These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。