Dietary calcium affects body composition and lipid metabolism in rats

膳食钙影响大鼠的身体成分和脂质代谢

阅读:5
作者:Haya Alomaim, Philip Griffin, Eleonora Swist, Louise J Plouffe, Michelle Vandeloo, Isabelle Demonty, Ashok Kumar, Jesse Bertinato

Abstract

Calcium (Ca) intakes may affect cardiovascular disease risk by altering body composition (body weight and fat) and serum lipid profile, but results have been inconsistent and the underlying mechanisms are not well understood. The effects of dietary Ca on body composition and lipid metabolism were examined in rats. Male Sprague-Dawley rats were fed high-fat, high-energy diets containing (g/kg) low (0.75Ca, 0.86 ± 0.05; 2Ca, 2.26 ± 0.02), normal (5Ca, 5.55 ± 0.08) or high (10Ca, 11.03 ± 0.17; 20Ca, 21.79 ± 0.15) Ca for 10 weeks. Rats fed the lowest Ca diet (0.75Ca) had lower (p < 0.05) body weight and fat mass compared to other groups. Rats fed the high Ca diets had lower serum total and LDL cholesterol compared to rats fed normal or low Ca. Liver total cholesterol was lower in rats fed high compared to low Ca. In general, liver mRNA expression of genes involved in cholesterol uptake from the circulation (Ldlr), cholesterol synthesis (Hmgcr and Hmgcs1), fatty acid oxidation (Cpt2) and cholesterol esterification (Acat2) were higher in rats fed higher Ca. Apparent digestibility of total trans, saturated, monounsaturated and polyunsaturated fatty acids was lower in rats fed the high compared to the low Ca diets, with the largest effects seen on trans and saturated fatty acids. Fecal excretion of cholesterol and total bile acids was highest in rats fed the highest Ca diet (20Ca). The results suggest little effect of dietary Ca on body composition unless Ca intakes are very low. Decreased bile acid reabsorption and reduced absorption of neutral sterols and saturated and trans fatty acids may contribute to the better serum lipid profile in rats fed higher Ca.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。