A novel deubiquitinase inhibitor b-AP15 triggers apoptosis in both androgen receptor-dependent and -independent prostate cancers

新型去泛素化酶抑制剂 b-AP15 可引发雄激素受体依赖性和非依赖性前列腺癌细胞凋亡

阅读:6
作者:Jianyu Cai #, Xiaohong Xia #, Yuning Liao #, Ningning Liu, Zhiqiang Guo, Jinghong Chen, Li Yang, Huidan Long, Qianqian Yang, Xiaolan Zhang, Lu Xiao, Xuejun Wang, Hongbiao Huang, Jinbao Liu

Abstract

Prostate cancer (PCa) remains a leading cause of cancer-related death in men. Especially, a subset of patients will eventually progress to the metastatic castrate-resistant prostate cancer (CRPC) which is currently incurable. Deubiquitinases (DUBs) associated with the 19S proteasome regulatory particle are increasingly emerging as significant therapeutic targets in numerous cancers. Recently, a novel small molecule b-AP15 is identified as an inhibitor of the USP14/UCHL5 (DUBs) of the 19S proteasome, resulting in cell growth inhibition and apoptosis in several human cancer cell lines. Here, we studied the therapeutic effect of b-AP15 in PCa, and our results indicate that (i) b-AP15 decreases viability, proliferation and triggers cytotoxicity to both androgen receptor-dependent and -independent PCa cells in vitro and in vivo, associated with caspase activation, inhibition of mitochondria function, increased reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress; (ii) pan-caspase inhibitor z-VAD-FMK and ROS scavenger N-acetyl-L-cysteine (NAC) efficiently block apoptosis but not proteasome inhibition induced by exposure of b-AP15; (iii) treatment with b-AP15 in androgen-dependent prostate cancer (ADPC) cells down-regulates the expression of androgen receptor (AR), which is degraded via the ubiquitin proteasome system. Hence, the potent anti-tumor effect of b-AP15 on both androgen receptor-dependent and -independent PCa cells identifies a new promising therapeutic strategy for prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。