Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance

使用干细胞及其衍生的外泌体对急性心肌梗塞进行联合治疗可改善心脏功能

阅读:8
作者:Peisen Huang, Li Wang, Qing Li, Jun Xu, Junyan Xu, Yuyan Xiong, Guihao Chen, Haiyan Qian, Chen Jin, Yuan Yu, Jiandong Liu, Li Qian, Yuejin Yang

Background

Bone marrow mesenchymal stem cells (MSCs) are among the most common cell types to be used and studied for cardiac regeneration. Low survival rate and difficult retention of delivered MSCs in infarcted heart remain as major challenges in the field. Co-delivery of stem cell-derived exosomes (Exo) is expected to improve the recruitment and survival of transplanted MSCs.

Conclusions

Combinatorial delivery of exosomes and stem cells in a sequential manner effectively reduces scar size and restores heart function after AMI. This approach may represent as an alternative promising strategy for stem cell-based heart repair and therapy.

Methods

Exo was isolated from MSCs and delivered to an acute myocardial infarction (AMI) rat heart through intramyocardial injection with or without intravenous infusion of atrovastatin-pretreated MSCs on day 1, day 3, or day 7 after infarction. Echocardiography was performed to evaluate cardiac function. Histological analysis and ELISA test were performed to assess angiogenesis, SDF-1, and inflammatory factor expression in the infarct border zone. The anti-apoptosis effect of Exo on MSCs was evaluated using flow cytometry and Hoechst 33342 staining assay.

Results

We found that intramyocardial delivery of Exo followed by MSC transplantation (in brief, Exo+MSC treatment) into MI hearts further improved cardiac function, reduced infarct size, and increased neovascularization when compared to controls treated with Exo or MSCs alone. Of note, comparing the three co-transplanting groups, intramyocardially injecting Exo 30 min after AMI combined with MSCs transplantation at day 3 after AMI achieved the highest improvement in heart function. The observed enhanced heart function is likely due to an improved microenvironment via Exo injection, which is exemplified as reduced inflammatory responses and better MSC recruitment and retention. Furthermore, we demonstrated that pre-transplantation injection of Exo enhanced survival of MSCs and reduced their apoptosis both in vitro and in vivo. Conclusions: Combinatorial delivery of exosomes and stem cells in a sequential manner effectively reduces scar size and restores heart function after AMI. This approach may represent as an alternative promising strategy for stem cell-based heart repair and therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。