A transcriptomic analysis of dental pulp stem cell senescence in vitro

牙髓干细胞体外衰老的转录组分析

阅读:6
作者:Jidong Xu, Mingchang Hu, Longfei Liu, Xuecheng Xu, Linlin Xu, Yu Song

Conclusion

Increased in vitro expansion induced cellular senescence in pulp stem cells, which resulted in a reduction in their proliferative capacity and osteogenic-lipogenic differentiation potential. The differential expression of genes such as CFH, WNT16, HSD17B2, IDI1, and COL5A3 may represent a potential mechanism for the induction of cellular senescence in pulp stem cells.

Methods

The tissue block method was used to extract hDPSCs from orthodontic-minus-extraction patients, which were then expanded and cultured in vitro for 12 generations. Stem cells from passages three, six, nine, and twelve were selected. Flow cytometry was used to detect the expression of stem cell surface markers, and CCK-8 was used to assess cell proliferation. β-Galactosidase staining was employed to detect cellular senescence, Alizarin Red S staining to assess osteogenic potential, and Oil Red O staining to evaluate lipogenic capacity. RNA sequencing (RNA-seq) was conducted to identify differentially expressed genes in DPSCs and investigate their potential mechanisms.

Purpose

The use of human dental pulp stem cells (hDPSCs) as autologous stem cells for tissue repair and regenerative techniques is a significant area of global research. The objective of this study was to investigate the effects of long-term in vitro culture on the multidifferentiation potential of hDPSCs and the potential molecular mechanisms involved. Materials and

Results

With increasing passage numbers, pulp stem cells showed an increase in senescence and a decrease in proliferative capacity and osteogenic-lipogenic multidifferentiation potential. The expression of stem cell surface markers CD34 and CD45 was stable, whereas the expression of CD73, CD90, and CD105 decreased with increasing passages. According to the RNA-seq analysis, the differentially expressed genes CFH, WNT16, HSD17B2, IDI1, and COL5A3 may be associated with stem cell senescence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。