Mesenchymal stem cell-derived small extracellular vesicles reduced hepatic lipid accumulation in MASLD by suppressing mitochondrial fission

间充质干细胞衍生的小细胞外囊泡通过抑制线粒体裂变减少 MASLD 中的肝脏脂质积累

阅读:8
作者:Yifei Chen #, Fuji Yang #, Yanjin Wang, Yujie Shi, Likang Liu, Wei Luo, Jing Zhou, Yongmin Yan

Background

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease characterized by lipid accumulation in liver cells. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have great potential in repairing and regenerating liver diseases. However, it is still unclear whether MSC-sEV can inhibit hepatocyte lipid accumulation by regulating mitochondrial fission.

Conclusions

The insights from this study provide a new perspective on the mechanism of MSC-sEV in reducing lipid accumulation and offer a potential therapeutic target by targeting DRP1 to inhibit hepatocyte steatosis and the progression of MASLD.

Methods

We investigated the effects of MSC-sEV on mitochondrial fission and its potential mechanism in lipotoxic hepatocytes and high-fat diet (HFD)-induced MASLD mice.

Results

We found that MSC-sEV can effectively inhibit the expression of the Dynamin-related protein 1 (DRP1), thereby reducing mitochondrial fission, mitochondrial damage, and lipid deposition in lipotoxic hepatocytes and livers of HFD-induced MASLD in mice. Further mechanistic studies revealed that RING finger protein 31 (RNF31) played a crucial role in mediating the inhibitory effect of MSC-sEV on DRP1 and mitochondrial fission. RNF31 can suppress DRP1 expression and mitochondrial fission, thereby improving mitochondrial dysfunction and reducing hepatocyte lipid deposition. These findings suggest that MSC-sEV may downregulate hepatocyte DRP1-mediated mitochondrial fission by transporting RNF31, ultimately inhibiting hepatocyte lipid accumulation. Conclusions: The insights from this study provide a new perspective on the mechanism of MSC-sEV in reducing lipid accumulation and offer a potential therapeutic target by targeting DRP1 to inhibit hepatocyte steatosis and the progression of MASLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。