Battery-operated portable PCR system with enhanced stability of Pt RTD

电池供电的便携式 PCR 系统,具有增强的 Pt RTD 稳定性

阅读:5
作者:Juhun Lim, Sangdo Jeong, Miyoung Kim, Jong-Hyun Lee

Abstract

This paper reports an outdoor-use polymerase chain reaction (PCR) technology in which stability of resistance temperature detectors (RTDs) is remarkably improved. A thin-film RTD made of non-annealed Pt shows accuracy degradation because the resistance of the RTD tends to decrease during the PCR operation. Thus, the annealing process is applied to the Pt RTD to improve the stability, which is a prerequisite to the accurate measurement of the absolute temperature. Both heaters and the RTD are fabricated on a thin quartz substrate whose melting temperature is high enough for annealing. The performances in the PCR time and power consumption are enhanced by reducing the size of the heater chips with no degradation in the temperature uniformity. A spring-loaded electrode is employed to simplify the procedure of electrical connection to the thermal controller and loading/unloading of the PCR chip. The contact area of the electrical connection is so small that the conductive thermal resistance increases; thereby small heat dissipation can be exploited for low-power operation. The stability of the RTD is experimentally confirmed in terms of resistance variation over repeated PCR operations (four times). The least variation of 0.005%, which corresponds to a negligible temperature variation of 0.038 °C for the PCR, is achieved from the RTD annealed for 5 min at 450 °C. The gel-electrophoresis result indicates that the PCR performance of the proposed system using a film-type PCR chip is comparable to that of a conventional system using a vial tube despite its low power consumption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。