Bioengineered tissue and cell therapy products are efficiently cryopreserved with pathogen-inactivated human platelet lysate-based solutions

使用病原体灭活的人类血小板裂解物溶液可有效冷冻保存生物工程组织和细胞治疗产品

阅读:8
作者:María Martín-López #, Cristina Rosell-Valle #, Blanca Arribas-Arribas, Beatriz Fernández-Muñoz, Rosario Jiménez, Sonia Nogueras, Ana Belén García-Delgado, Fernando Campos, Mónica Santos-González0

Background

There remains much interest in improving cryopreservation techniques for advanced therapy medicinal products (ATMPs). Recently, human platelet lysate (hPL) has emerged as a promising candidate to replace fetal bovine serum (FBS) as a xeno-free culture supplement for the expansion of human cell therapy products. Whether hPL can also substitute for FBS in cryopreservation procedures remains poorly studied. Here, we evaluated several cryoprotective formulations based on a proprietary hPL for the cryopreservation of bioengineered tissues and cell therapy products.

Conclusions

Our results show that pathogen-inactivated solutions Ti5 allocated for bioengineered tissues and CeA allocated for cells are efficient and safe candidates to cryopreserve ATMPs and offer a xenogeneic-free and low-DMSO alternative to commercially available cryoprotective solutions.

Methods

We tested different xenogeneic-free, pathogen-inactivated hPL (ihPL)- and non-inactivated-based formulations for cryopreserving bioengineered tissue (cellularized nanostructured fibrin agarose hydrogels (NFAHs)) and common cell therapy products including bone marrow-derived mesenchymal stromal cells (BM-MSCs), human dermal fibroblasts (FBs) and neural stem cells (NSCs). To assess the tissue and cellular properties post-thaw of NFAHs, we analyzed their cell viability, identity and structural and biomechanical properties. Also, we evaluated cell viability, recovery and identity post-thaw in cryopreserved cells. Further properties like immunomodulation, apoptosis and cell proliferation were assessed in certain cell types. Additionally, we examined the stability of the formulated solutions. The formulations are under a bidding process with MD Bioproducts (Zurich, Switzerland) and are proprietary.

Results

Amongst the tissue-specific solutions, Ti5 (low-DMSO and ihPL-based) preserved the viability and the phenotype of embedded cells in NFAHs and preserved the matrix integrity and biomechanical properties similar to those of the standard cryopreservation solution (70% DMEM + 20% FBS + 10% DMSO). All solutions were stable at - 20 °C for at least 3 months. Regarding cell-specific solutions, CeA maintained the viability of all cell types > 80%, preserved the immunomodulatory properties of BM-MSCs and promoted good recovery post-thaw. Besides, both tested solutions were stable at - 20 °C for 18 months. Finally, we established that there is a 3-h window in which thawed NFAHs and FBs maintain optimum viability immersed in the formulated solutions and at least 2 h for BM-MSCs. Conclusions: Our results show that pathogen-inactivated solutions Ti5 allocated for bioengineered tissues and CeA allocated for cells are efficient and safe candidates to cryopreserve ATMPs and offer a xenogeneic-free and low-DMSO alternative to commercially available cryoprotective solutions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。