Enabling QTY Server for Designing Water-Soluble α-Helical Transmembrane Proteins

启用 QTY 服务器来设计水溶性 α-螺旋跨膜蛋白

阅读:5
作者:Fei Tao, Hongzhi Tang, Shuguang Zhang, Mengke Li, Ping Xu

Abstract

Membrane proteins, particularly those that are α-helical, such as transporters and G-protein-coupled receptors (GPCRs), have significant biological relevance. However, their expression and purification pose difficulties because of their poor water solubilities, which impedes progress in this field. The QTY method, a code-based protein-engineering approach, was recently developed to produce soluble transmembrane proteins. Here, we describe a comprehensive Web server built for QTY design and its relevance for in silico analyses. Typically, the simple design model is expected to require only 2 to 4 min of computer time, and the library design model requires 2 to 5 h, depending on the target protein size and the number of transmembrane helices. Detailed protocols for using the server with both the simple design and library design modules are provided. Methods for experiments following the QTY design are also included to facilitate the implementation of this approach. The design pipeline was further evaluated using microbial transmembrane proteins and structural alignment between the designed proteins and their origins by employing AlphaFold2. The results reveal that mutants generated by the developed pipeline were highly identical to their origins in terms of three-dimensional (3D) structures. In summary, the utilization of our Web server and associated protocols will enable QTY-based protein engineering to be implemented in a convenient, fast, accurate, and rational manner. The Protein Solubilizing Server (PSS) is publicly available at http://pss.sjtu.edu.cn. IMPORTANCE Water-soluble expression and purification are of considerable importance for protein identification and characterization. However, there has been a lack of an effective method for water-soluble expression of membrane proteins, which has severely hampered their studies. Here, an enabling comprehensive Web server, PSS, was developed for designing water-soluble mutants of α-helical membrane proteins, based on QTY design, a code-based protein-engineering approach. With microbial transmembrane proteins and GPCRs as examples, we systematically evaluated the server and demonstrated its successful performance. PSS is readily available for worldwide users as a Web-based tool, rendering QTY-based protein engineering convenient, efficient, accurate, and rational.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。