Identification and characterization of a residual host cell protein hexosaminidase B associated with N-glycan degradation during the stability study of a therapeutic recombinant monoclonal antibody product

在治疗性重组单克隆抗体产品的稳定性研究期间,对与 N-糖降解相关的残留宿主细胞蛋白己糖胺酶 B 进行鉴定和表征

阅读:5
作者:Xuanwen Li, Yan An, Jing Liao, Li Xiao, Michael Swanson, Kirby Martinez-Fonts, Jorge Alexander Pavon, Edward C Sherer, Vibha Jawa, Fengqiang Wang, Xinliu Gao, Simon Letarte, Douglas D Richardson

Abstract

Host cell proteins (HCPs) are process-related impurities derived from host organisms, which need to be controlled to ensure adequate product quality and safety. In this study, product quality attributes were tracked for several monoclonal antibodies (mAbs) under the intended storage and accelerated stability conditions. One product quality attribute not expected to be stability indicating is the N-glycan heterogeneity profile. However, significant N-glycan degradation was observed for one mAb under accelerated and stressed stability conditions. The root cause for this instability was attributed to hexosaminidase B (HEXB), an enzyme known to remove terminal N-acetylglucosamine (GlcNAc). HEXB was identified by liquid chromatography-mass spectrometry (LC-MS)-based proteomics approach to be enriched in the impacted stability batches from mAb-1. Subsequently, enzymatic and targeted multiple reaction monitoring (MRM) MS assays were developed to support process and product characterization. A potential interaction between HEXB and mAb-1 was initially observed from the analysis of process intermediates by proteomics among several mAbs and later supported by computational modeling. An improved bioprocess was developed to significantly reduce HEXB levels in the final drug substance. A risk assessment was conducted by evaluating the in silico immunogenicity risk and the impact on product quality. To the best of our knowledge, HEXB is the first residual HCP reported to have impact on the glycan profile of a formulated drug product. The combination of different analytical tools, mass spectrometry, and computational modeling provides a general strategy on how to study residual HCP for biotherapeutics development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。