Entrance of the proton pathway in cbb3-type heme-copper oxidases

cbb3 型血红素铜氧化酶中质子途径的入口

阅读:8
作者:Hyun Ju Lee, Robert B Gennis, Pia Ädelroth

Abstract

Heme-copper oxidases (HCuOs) are the last components of the respiratory chain in mitochondria and many bacteria. They catalyze O(2) reduction and couple it to the maintenance of a proton-motive force across the membrane in which they are embedded. In the mitochondrial-like, A family of HCuOs, there are two well established proton transfer pathways leading from the cytosol to the active site, the D and the K pathways. In the C family (cbb(3)) HCuOs, recent work indicated the use of only one pathway, analogous to the K pathway. In this work, we have studied the functional importance of the suggested entry point of this pathway, the Glu-25 (Rhodobacter sphaeroides cbb(3) numbering) in the accessory subunit CcoP (E25(P)). We show that catalytic turnover is severely slowed in variants lacking the protonatable Glu-25. Furthermore, proton uptake from solution during oxidation of the fully reduced cbb(3) by O(2) is specifically and severely impaired when Glu-25 was exchanged for Ala or Gln, with rate constants 100-500 times slower than in wild type. Thus, our results support the role of E25(P) as the entry point to the proton pathway in cbb(3) and that this pathway is the main proton pathway. This is in contrast to the A-type HCuOs, where the D (and not the K) pathway is used during O(2) reduction. The cbb(3) is in addition to O(2) reduction capable of NO reduction, an activity that was largely retained in the E25(P) variants, consistent with a scenario where NO reduction in cbb(3) uses protons from the periplasmic side of the membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。