Re-engineered RNA-Guided FokI-Nucleases for Improved Genome Editing in Human Cells

重新设计的 RNA 引导 FokI 核酸酶可改善人类细胞的基因组编辑

阅读:8
作者:Steven Havlicek, Yang Shen, Yunus Alpagu, Michaela B Bruntraeger, Nurdiana B M Zufir, Zhi Yi Phuah, Zhiyan Fu, Norris R Dunn, Lawrence W Stanton

Abstract

Clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 enables us to generate targeted sequence changes in the genomes of cells and organisms. However, off-target effects have been a persistent problem hampering the development of therapeutics based on CRISPR/Cas9 and potentially confounding research results. Efforts to improve Cas9 specificity, like the development of RNA-guided FokI-nucleases (RFNs), usually come at the cost of editing efficiency and/or genome targetability. To overcome these limitations, we engineered improved chimeras of RFNs that enable higher cleavage efficiency and provide broader genome targetability, while retaining high fidelity for genome editing in human cells. Furthermore, we developed a new RFN ortholog derived from Staphylococcus aureus Cas9 and characterize its utility for efficient genome engineering. Finally, we demonstrate the feasibility of RFN orthologs to functionally hetero-dimerize to modify endogenous genes, unveiling a new dimension of RFN target design opportunities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。