Slowdown of Translational Elongation in Escherichia coli under Hyperosmotic Stress

高渗胁迫下大肠杆菌翻译延长减慢

阅读:3
作者:Xiongfeng Dai #, Manlu Zhu #, Mya Warren, Rohan Balakrishnan, Hiroyuki Okano, James R Williamson, Kurt Fredrick, Terence Hwa

Abstract

In nature, bacteria frequently experience many adverse conditions, including heat, oxidation, acidity, and hyperosmolarity, which all tend to slow down if not outright stop cell growth. Previous work on bacterial stress mainly focused on understanding gene regulatory responses. Much less is known about how stresses compromise protein synthesis, which is the major driver of cell growth. Here, we quantitatively characterize the translational capacity of Escherichia coli cells growing exponentially under hyperosmotic stress. We found that hyperosmotic stress affects bacterial protein synthesis through reduction of the translational elongation rate, which is largely compensated for by an increase in the cellular ribosome content compared with nutrient limitation at a similar growth rate. The slowdown of translational elongation is attributed to a reduction in the rate of binding of tRNA ternary complexes to the ribosomes.IMPORTANCE Hyperosmotic stress is a common stress condition confronted by E. coli during infection of the urinary tract. It can significantly compromise the bacterial growth rate. Protein translation capacity is a critical component of bacterial growth. In this study, we find for the first time that hyperosmotic stress causes substantial slowdown in bacterial ribosome translation elongation. The slowdown of translation elongation originates from a reduced binding rate of tRNA ternary complex to the ribosomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。