Anthrax lethal toxin exerts potent metabolic inhibition of the cardiovascular system

炭疽致命毒素对心血管系统产生强大的代谢抑制作用

阅读:6
作者:Jie Liu, Zehua Zuo, Rasem Fattah, Toren Finkel, Stephen H Leppla, Shihui Liu

Abstract

Bacillus anthracis causes anthrax through a combination of bacterial infection and toxemia. As a major virulence factor of B. anthracis, anthrax lethal toxin (LT) is a zinc-dependent metalloproteinase, exerting its cytotoxicity through proteolytic cleavage of the mitogen-activated protein kinase kinases, thereby shutting down the MAPK pathways. Anthrax lethal toxin induces host lethality mostly by targeting the cardiovascular system. Although the enzymatic activity and the molecular targets of LT have long been known, the detailed mechanisms underlying cellular/tissue/organ toxicity are still poorly understood. In this work, we sought to investigate the mechanism of LT-induced cellular damage in the cardiovascular system. We demonstrate for the first time that anthrax lethal toxin has potent inhibitory effects on the central metabolism of cardiomyocytes and endothelial cells. This is likely due to the observed downregulating of c-Myc expression through the toxin-induced inhibition of the ERK pathway. Since c-Myc is a master transcription factor controlling the expression of many rate-limiting metabolic enzymes in glycolysis and the tricarboxylic acid cycle, LT's downregulation of c-Myc may lead to the observed bioenergetic collapse, particularly, in cardiomyocytes. Since cardiac cell contraction requires continuous production of large amounts of ATP, potent inhibition of the bioenergetics of cardiomyocytes would be incompatible with life. Thus, LT-induced lethality through targeting cardiomyocytes and endothelial cells appears to be a consequence of a bioenergetic collapse, likely due to the toxin's potent inhibitory activity on the MEK-ERK-c-Myc-metabolic/bioenergetic axis within these target cells of cardiovascular system.IMPORTANCEAnthrax lethal toxin (LT) is a major virulence factor of Bacillus anthracis, the causative pathogen of anthrax disease. Anthrax lethal toxin is a metalloproteinase that cleaves and inactivates MEKs, thereby shutting down MAPK pathways, leading to host mortality primarily through targeting of the cardiovascular system. However, the detailed mechanisms underlying the toxin's cellular and tissue toxicity are still poorly understood. Here, we found that anthrax lethal toxin has potent inhibitory activity on glycolysis and oxidative phosphorylation of cardiomyocytes and endothelial cells. These effects appear to be the consequence of downregulation of c-Myc, a master transcription factor that controls many rate-limiting enzymes of glycolysis and the tricarboxylic acid cycle. With the high demand on energy for cardiac contraction, the potent inhibition of cardiomyocyte metabolism by LT would be incompatible with life. This work provides critical insights into why the cardiovascular system is the major in vivo target of LT-induced lethality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。