Cross-talk between microtubules and the linker of nucleoskeleton complex plays a critical role in the adipogenesis of human adipose-derived stem cells

微管与核骨架复合物连接子之间的串扰在人类脂肪干细胞的脂肪形成中起着关键作用

阅读:5
作者:Yiting Yang, Rongmei Qu, Tingyu Fan, Xi Zhu, Yanting Feng, Yuchao Yang, Ting Deng, Yan Peng, Wenhua Huang, Jun Ouyang, Jingxing Dai

Background

Adipose-derived stem cells (ASCs) that show multidifferentiation and anti-immune rejection capacities have been widely used in plastic and reconstructive surgery. Previous studies have indicated that mechanical and biophysical interactions between cells and their surrounding environment regulate essential processes, such as growth, survival, and differentiation, and the cytoskeleton system plays an important role in the mechanotransduction. However, the role of mechanical force in the determination of lineage fate is still unclear.

Conclusions

We demonstrated the presence of cross-talk between MT and SUN2, and this cross-talk plays a critical role in the rebalance of the mechanical environment and is involved in the regulation of PPARγ transport during adipogenic differentiation of hASCs.

Methods

Human ASCs (hASCs) were obtained from three different donors by liposuction. Adipogenesis and osteogenesis were determined by Oil Red O and Alizarin Red staining, respectively. The mRNA levels of the cytoskeleton system, PPARγ, and C/EBPα were determined by real-time polymerase chain reaction (RT-PCR). The level of cytoskeleton, PPARγ, and C/EBPα protein levels were measured by Western blotting. The morphology of the cytoskeleton system during adipogenesis was observed with confocal microscopy. hASCs were transfected with a SUN2-specific shRNA to knockdown sun2, and a nontargeting shRNA was used as a control.

Results

We found that disrupting the physiological balance between the cytoskeleton and the linker of the nucleoskeleton and cytoskeleton (LINC) complex (especially SUN2) could impact the adipogenesis of hASCs in vitro. Microtubule (MT) depolymerization with nocodazole (which interferes with the polymerization of MTs) increased the expression of SUN2 and PPARγ, while taxol (an inhibitor of MT disassembly) showed the opposite results. Meanwhile, hASCs with sun2 knockdown overexpressed MTs and decreased PPARγ expression, thereby inhibiting the adipogenesis. Furthermore, knockdown of sun2 changed the structure of perinuclear MTs. Conclusions: We demonstrated the presence of cross-talk between MT and SUN2, and this cross-talk plays a critical role in the rebalance of the mechanical environment and is involved in the regulation of PPARγ transport during adipogenic differentiation of hASCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。