Conclusions
Stimulation of the Nodal signaling pathway with Activin A or IDE1/2 is insufficient to induce definitive endoderm formation from USSC, indicating that USSC differ in their stem cell potential from hESC.
Methods
USSC were cultured for (1) three days with or without 100 ng/ml Activin A in either serum-free, low-serum or serum-containing media, (2) three days with or without 100 ng/ml Activin A in combination with 10 ng/ml FGF4 in pre-induction medium, or (3) four days with or without small molecules Induce Definitive Endoderm (IDE1, 100 nM; IDE2, 200 nM) in serum-free media. Formation of definitive endoderm was assessed using RT-PCR for gene markers of endoderm (Sox17, FOXA2 and TTF1) and lung epithelium (surfactant protein C; SPC) and cystic fibrosis transmembrane conductance regulator; CFTR). The differentiation capacity of Activin A treated USSC was also assessed.
Results
Activin A or IDE1/2 induced formation of Sox17+ definitive endoderm from hESC but not from USSC. Activin A treated USSC retained their capacity to form cells of the ectoderm (nerve), mesoderm (bone) and endoderm (lung). Activin A in combination with FGF4 did not induce formation of Sox17+ definitive endoderm from USSC. USSC express both Activin A receptor subunits at the mRNA and protein level, indicating that these cells are capable of binding Activin A. Conclusions: Stimulation of the Nodal signaling pathway with Activin A or IDE1/2 is insufficient to induce definitive endoderm formation from USSC, indicating that USSC differ in their stem cell potential from hESC.
