Long Noncoding RNA lncMUMA Reverses Established Skeletal Muscle Atrophy following Mechanical Unloading

长链非编码RNA lncMUMA可逆转机械卸载后已形成的骨骼肌萎缩

阅读:6
作者:Zong-Kang Zhang, Jie Li, Daogang Guan, Chao Liang, Zhenjian Zhuo, Jin Liu, Aiping Lu, Ge Zhang, Bao-Ting Zhang

Abstract

Reversing established muscle atrophy following mechanical unloading is of great clinical challenge. Long noncoding RNAs (lncRNAs) have been demonstrated to play important roles in myogenesis. Here we identified a lncRNA (mechanical unloading-induced muscle atrophy-related lncRNA [lncMUMA]) enriched in muscle, which was the most downregulated lncRNA during muscle atrophy development in hindlimb suspension (HLS) mice. The in vitro and in vivo data demonstrated that the decreased expression levels of lncMUMA closely associated with a reduction of myogenesis during mechanical unloading. Mechanistically, lncMUMA promoted myogenic differentiation by functioning as a miR-762 sponge to regulate the core myogenic regulator MyoD in vitro. The enforced expression of lncMUMA relieved the decreases in MyoD protein and muscle mass in miR-762 knockin mice. Therapeutically, the enforced expression of lncMUMA improved the in vitro myogenic differentiation of myoblasts under microgravity simulation, prevented the muscle atrophy development, and reversed the established muscle atrophy in HLS mice. These findings identify lncMUMA as an anabolic regulator to reverse established muscle atrophy following mechanical unloading.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。